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ABSTRACT

The solution to the problem of two coplanar penny-
shaped cracks in an infinite elastic medium is sought for
the case where asymmetric heat flux or temperature dif-
ference is prescribed over the surfaces of the cracks. The
problem is reduced to determining the solution to two sets
of coupled Fredholm integral equations. An example is
worked for a case where the temperature is prescribed
over the crack faces and the heat flux normal to the plane
containing the cracks is zero. The integral equations are
then solved iteratively assuming that the spacing between
the cracks is large relative to their radii. Physical quan-
tities of interest, such as crack-opening displacement and
stress intensity factor, are investigated.
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STRESS INTENSITY AND CRACK-OPENING DISPLACEMENT
FOR COPLANAR CRACKS IN THERMOELASTICITY

INTRODUCTION

Reflection of compressive waves at free boundaries often results in the creation of
cracks associated with high temperature and heat flow in the material. The crack may
then grow under these thermal loadings. After the transient stage, the stress distribu-
tions in the material may be obtained by considering boundary value problems in thermo-
elasticity.

This report is the study of a reduced boundary value problem in thermoeleasticity -
the determination of the crack-opening displacement and the stress intensity factor for
the extension of two coplanar penny-shaped cracks opened by heating with additional
mechanical loadings. Only steady-state temperature fields are considered.

The problem of a single penny- shaped crack opened by axisymmetric thermal load-
ing was first solved by Olesiak and Sneddon (1) using the method of integral transforms.
Their solution to the equations of thermoelasticity is appropriate for the case of a crack,
which has stress-free faces and produces zero shear stress on the plane containing the
crack. Williams (2) subsequently showed that the displacement vector as described in
Ref. 1 can be written in terms of two harmonic functions, one which is directly related to
the temperature field, and indicated that the problem in Ref. 1 can be reduced to simple
boundary value problems in potential theory.

The problem of two coplanar penny-shaped cracks, each under asymmetric loading,
is formulated in terms of harmonic functions, and the method used is that of Williams (2)
and Collins (3) who solved the isothermal problem. The solution to the problem is re-
duced to the determination of some auxiliary function for a set of Fredholm integral
equations of the second kind, which may be solved by the method of successive approxi-
mation when the radii of cracks are small relative to the crack separation. The case
where constant temperature is prescribed over the faces of the cracks is given as an
illustrative example in which the crack-opening displacement, stress intensity factor,
and potential energy decrease per crack are determined.

FORMULATION OF PROBLEM

The solution to certain problems involving combined mechanical and thermal load-
ings on solids which contain two coplanar penny- shaped cracks is sought by techniques
appropriate to the classical theory of thermoelasticity. The two coplanar cracks and
E are each of radius a, their centers being a distance 2h apart. Their planes coincide
with the plane z = 0, and two sets of cylindrical polar coordinates (r, 0, z) and (, , )
are used, with the centers and of and as origins, and 0 being the points
(2h, 0,0 ) and (2h,7r, 0) in these respective coordinates. The regions and are thus
given by

z 0 ( < r < a, O < 0 < 27)

and
z (0 < F < a, O 0 < 2)
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A solution is required to satisfy the equilibrium field equations in thermoelasticity:

(1)(1- 2v) A2 + grad [A- u- 2(1+ v) aT] = 0 ,

and

A 2 T = 0O (2)

where A2, v, and a denote the Laplacian operator, Poisson's ratio, and the linear ther-
mal expansion of the solid, respectively, and = (u, v, w), which are displacements in
the directions (r, o, z) for the cylindrical system of coordinates associated with crack S.
A similar set of equations can be written for the coordinate system (, o, z) associated
with crack E. It is easily verified that Eqs. (1) and (2) are satisfied by the following
choice of u and T (Ref. 2):

2G = -grad + z grad ad/az + dl/dzk - (1 - 2v) grad K

- z grad ad/az + (3- 4 ) dK/dz k

2G T = [ 2 ( 1 - v )/a (+v)] a 2D/az 2 ,

(3)

(4)

where (D and K are harmonic functions and G is the shear modulus. The shear stresses
vanish automatically on the plane z = 0, and the normal stress o-" and normal displace-
ment w on this plane remain as

= a/ z - 2DZ2(5)

and

(6)2Gw = 2 (1 - v)T A,

where

= aK/az .

Since the problem possesses certain symmetry properties with respect to the plane
z = 0, only the solution for z o is considered. The functions v and D are then repre-
sented by integrals involving Bessel functions of the first kind in the following form to
ensure that the stresses do not have singularities of too high an order:

= i&(r,O, z) + (r, , z)

00 a OD

= E (7i/2)1/2 cos m(0 + am) f gm (t) f
mO 0 0

OD

+ E (/2)1/2 cos m(j+ am)

m 0

Ja I0

gm~t) J (Xt)1 m/2 A)J(r) e1\Z dAdt
gm MII ( m0)e

(7)

and

2

and

(,\ t) 1/2 J.- 12 (1,t) J. (Ar) e-,\z dAdt



NRL REPORT 6987

a2F/az2 = 2q(r,0, Z)/aZ2 + 2 (r,o, z)/Z2

P r zra

= (/2)1/2 cosm(O + m) J ]m(t) J (Xt)l/2 J. 1 / 2 (Xt) Jm(Xr) e-z dAdt
m=O0 0

+ E (n/2)1/2 cos m(O+m)
m= o 0

(Xt)1/2 Jm- /2 ( t) Jm(Xr) eZ dXdt,

(8)

where A&, p, &, and @ are harmonic functions, and gm im im and im are auxiliary
functions to be determined by boundary conditions; the barred quantities are taken with
respect to the coordinate system (r, j, z), and the unbarred quantities are taken with re-
spect to the coordinate system (r, o, z).

It is assumed that the harmonic functions involved and all boundary data can be ex-
panded into the form of a Fourier series, and a subscript m will refer to the mth term in
the series. For example, boundary data may be given in the form

X = x(r,O,O) + x(r,OO)

= cos m ( + m) xm(r) on
m.0

ft cos m ( + m) m(r) on 
m o

The integral representations chosen for , , 2p/az 2 , and q/z 2 in Eqs. (7) and
(8) possess certain interesting properties on the plane z = 0. As z - o, the functions
0 and cp yield

r < t,
(9)

co
Q~rO,) = ,cos m~ + am rm St-m ( t2 2)-1/ 2 gm( t) dt ,

m=0 r

= 0 for r > t;

therefore,

- cos m(O + am) r(m+l) d (
m=0 Idr 

tm+l(r2 - t 2 )-1/2 gm(t) dt

a 2 cp(r,0,0)/az 2
= TZ cos m( + m)

m= 0

r Jr-mf
0

t m (r2 - t 2 )-1 /2 m(t) dt, r > t,

and

a3 (r, 0, O)/az 3 =
coa

cos m(O + Pm) rml -.. f t-m+l(t2 - r 2 )-1 /2 jm(t) dt , r < t,T. dr

= 0 , for r > t,

(10)

(11)

(12)
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where Eq. (7) in Ref. 4 is used. As 0, the functions 0k and will yield a similar set
of relations as in Eqs. (9) through (12), except now corresponding quantities should have
bars. From these values it is easily seen that is zero at all points except those on ,
and is zero at all points except those on E; a3 c7/az3 is zero in , and a3 Z/az3 is zero
in . Hence, the choice of I and as in Eqs. (7) and (8) leads to the satisfaction of Eqs.
(1) and (2) and also to the result that is zero at all points except those in E and . It
is also noted that 0fm(r) = in Eq. (9) ensures that d'/8z will not have singularities of too
high an order on the edges of and .

BOUNDARY CONDITIONS AND SOLUTION

It is interesting to study two thermal loading conditions where cracks are opened by
(a) the application of a prescribed temperature to their flat faces which are stress free
and (b) the application of a prescribed heat flux to their faces. The boundary conditions
imposed on the harmonic function cD are, for case (a),

2(D/aZ2 (1 + v)G (3
a2 = ( 1 )-To T Y cos m( + ) pm(r) in (

(l v)G To cos m(O + m) pm(r) in I (14)

and

a3oaz3 = 0 at all other points on z = 0 (15)

for case (b),

ax

a3:D/az3 = ± (1+ ) G E cos m( + m) qm(r) in (16)
(v) m=0

+ +(1+v) G cos m(O+lm) q(r) * in I (17)(v) mm0m 

and

a3¢d~Z3 = 0 at all other points on z = 0 (18)

where To is a positive constant, Pm and q are the prescribed temperature and heat flux,
respectively, and Eq. (4) is used. Let the cracks be opened by thermal loadings super-
posed on a uniform tension field at infinity, the elastic boundary conditions on z = 0 can
be written as (Ref. 5)

a'P/az - a2Q/az2 = cos m(O + m) fm(r) in (19)
.- o

=-L cos m (+ m) fm () in ( (20}
m =0

and
T = 0 at all other points on z = 0 ,

4
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where Eqs. (5) and (6) are used and fm and fm are related to the applied pressure on the
crack faces. It should be noted here that the additional requirement that shear must
vanish on plane z = 0 is satisfied automatically by the choice of u and T as in Eqs. (4)
and (5) and hence imposes no condition on (D and .

From Eqs. (9) through (12) it is easily seen that the conditions in Eqs. (15), (18), and
(21) are identically satisfied. Substituting Eq. (11) and a similarly written a 2

-/ 2 in
Eq. (13) leads to a set of integral equations satisfied by jm. Jm m, and 3m in :

ji(t) + E (_l)n Cos
n=O

im ( t) cos he + E (_l)n
n=o

a

n~2 f n I (s, t) Jn ( s) ds = P( t) 
0

cos nf

Im(t) sin 03m - E (-t)n sin n1
n=0

= P( t) sin mdm'

[Lnm(S, t) + ( )m Ln m(St)] jn(s) ds

a [Lnm(S, t) - (-1) Ln,-m(s.t)] j,,(s) ds

Ln, m(S',t) = (st)1/ 2
£o

and

Pm( = - [2GaTo(l + )/7(1 - ) t] d t rm +1(t2
- r 2 )-'12 p(r) dr.

dTt o

To obtain Eqs. (22), the addition theorem involving Bessel (6) functions

Jm(Xr) Cos =m A)sin m (25)
2J
EJ.,.(2,kh) n (A\r) Sno IO

n =-co

where 0l = 7T- O must be used to transform all quantities in the (r, j, Z) system to the
(r 0, z) system. Writing quantities in (r, a, z) and substituting Eq. (11) in Eq. (14) yield
a set of integral equations similar to those of Eqs. (22) and can be obtained by replacing
the barred and unbarred quantities with Pm defined as

P = (-l)+l [2GaT(+ v)/7(I- v) tm] d f M 1(t 2 - 72)-I/2 (F) d-
dt 0oP 

= (t) os mm ,

and

(22a)

(22b)

where

(22c)

(23)

(24)

5
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Considering j'in Jm, m, and m as known quantities and substituting Eqs. (10) and
(11) in Eq. (19) leads to a set of integral equations satisfied by g,, jm, am, and m in .:

0 a

go( t) + T (-1)n cos n n f
nO 0

AfnO(s, t) gn(s) ds

= -Fo(t) - f
0

gm(t) cos mam

jo (s) ds + 
n=O

co a

+ E (_)n Cos nan f
n= 0

(-1 )n coS n A'~0 (S t) jo(s) ds, (26a)

[Mnm(s, t) + (-1) Mn, m(s t)] gn(s) ds

= -Fm ( t) cos mCm - cos mn f (s/t)m m(S) ds
0

+ -1)n~ cos n~ [Nnm(s, t) - (l)m Nn, .(, ) 7(s) ds 
0

co a

gm(t) sin mam - E (-1)n sin nn f
n = 0

[Mn,.(S, t) - (-1)mMn -m(s, t)] gn(s) ds

= -Fm (t) sin mCm - sin mmf (S/t) m jm(S) ds
0

- E ( 1)n sin nn
n =O

Mn , i(Ss t) = (St)112

Nn ±m(S t) = (t) 1/2

f [Nnm(S, t) - ( )m Nn,,m(s, t)] (s) ds,

J AJn+1/ 2(Xs) Jm+1 2 (At) Jn±m(2Xh) dX ,
0

JC

t
Fm = ( 2/n) Ad 

dt 
r(t2 - r2)'1/2 fm(r) dr .

When the temperature prescribed over the cracks are symmetric with respect to the
plane which is the perpendicular bisector of 00, namely, mirror symmetry is possessed
by the prescribed temperature, it is seen that

and

(26b)

where

(26c)

and

(27)

Jn-1/ 2( As) Jm+1 2( At) Jn±m(2h) dA (28)

(29)

6
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Pm = Pm and fm = T f

It follows that

]m(t) = m(t) and [3 = f -Pm '

where jm(t) and the angles Iem satisfy a set of coupled Fredholm integral equations

a

1o(t) + cos nn f Ln O(s,
n=O 

co a

jm(t) cos mm + L cos nfn 
n=O

t) jn(s) ds = P (t),

[Lnm(s t) + () m Ln,.m(S,t)] jn(S) ds

PM(t) cos mm 

and

Jm(t) sin mm
a

sin nfco

+ 
n=O

= fm(t) sin mm 

If the applied pressure also possesses the mirror symmetry
perpendicular to 0, the following relations can be obtained:

with respect to a plane

fm = fm C. = 7T ;m 

gm m am = 7 am 

and Eqs. (26) reduce to

aw

0(t) + E cos nan
n=O I Mno(s,t) gn(s) ds

t OD a

-F 0 (t) - f jo(s) ds + E cos n f
0 n=O

Nn,0 (s, t) in(s) ds ,

gm(t) cos mam +

00 a

T Cos nn j
nUO 0

[Mn,(s, t) + (1) m Mn,-m(St)] gn(s) ds

= -F ,,(t) cos mm cos mpm

t

0f
(s/t) m im(s) ds

(32b)+ cos nm f j [Nn,m(st) + (1)m Nn, -mm(s,t)] jn(s) ds ,
n=0 o

(30)

(3 la)

(31b)

[Lnm(Sit) - () mLn,.m(S,t)] jn(s) ds
(31c)

(32a)

7



WHAI-SANG FU

and

D

gn(t) sin mam - 2 sin
n 0

= -F,(t) sin m -

- 21 sin nn
n= =o

a

nan f [M1nm(St) - () m n-.m(s, t)] g(s) ds
0

t

sin mm f (s/t) m m(s) ds

[Nnrn(St) - (1) m Nn-m(s,0t)1 in(s) ds 

Substituting Eq. (12) and 3 'p/az3 in Eqs. (16) and (17) leads to a set of integral equa-
tions satisfied by Im, Jm, 8, and 9, for case (b). If heat flux prescribed over the crack
faces has mirror symmetry with respect to the plane perpendicular to 00, the set of
coupled integral equations satisfied by im and ,Bm can be obtained in a manner similar to
that for case (a) as

a

jo(t) + 2 cos nn, Kn, o(st) in(s) ds = TQo(t) 
n = 

(33a)

Jr(t) Cos m3M

co a
+ E Cos n J

n=O O

[Kn,,(st) + (1) m Knm(s, t)] jn(s) ds

(33b)= +Qm(t) cos mn

and

im(t) sin mm
a

+ E s in nf311 [K1n (s,) O - (J) m Kn, rn( St j1 1i(s) ds

(33c)= +Qm(t) sin mI

where

and

Kn ±.(S, t) = t-2 m-+1 (t)1/ 2 f
0

a r

d- r(r 2 - t 2 )-1/2 Js-(m-1) q(s) dsdr
t , 0

AJn-1l/ 2 (S) Jm-3 / 2(At) Jn±m(2Ah) d .

The set of integral equations to be satisfied by g and am is identical to Eqs. (32). It
should be noted that the relations

im = J gm = T -/m

(32c)

8
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and

Am = am . am = o- am

are used.

The solution to the boundary value problems is now reduced to the determination of
the auxiliary functions m and g in Eqs. (31) and (32) for case (a) and Eqs. (32) and (33)
for case (b). In general, the solution of these equations must be found numerically; how-
ever, when the crack radii a is small relative to the crack separation 2h, and approxi-
mate solution can be developed in terms of a power series depending on the ratio a = a2h.
This technique is demonstrated by an example where the temperature prescribed over the
crack faces is a constant; the method of successive approximation is used.

Certain quantities of physical interest can be written directly in terms of the auxiliary
functions. Manipulating Eqs. (6) and (7) gives the crack-opening displacement (C.O.D.) in
E and as

C.O.D. = (w+ - w) = 2 E w(r) cos m(O + hm)
m0=

co a

- [2(1-v)/G] E cos mn(O+am) rm f t- m(t 2 -r 2 )- 1' 2 (t) dt (34)
0= r

The stress intensity factor defined as

a = (r2 - a2)" 2 r (a+ 0, 0)
r-ea+

is given as

= 1E m(r) cos m(e km)
m=0

= -im (r2- a2)l/ 2 cos m(O + a) r-(m+l) - tm+l(r2- a2)1/ 2 gm(t) dt (35)
r-).+ m=O dr a

where Eqs. (5), (10), and (11) are used. It is noted here that da/za and a 2F/Da2 contain
no singularity as r - a+ and hence are not included in Eq. (35).

SOLUTION OF AN EXAMPLE PROBLEM

As an example, suppose the coplanar penny- shaped cracks are opened under the com-
bined loading of a constant applied tension at infinity and a uniform heating of the solid.
Using the standard procedure as described in Ref. 5, it is easily understood that solving
the stated problem is equivalent to solving the problem where constant pressure and tem-
perature are prescribed over the crack faces; at all other points on the plane z = 0 the
displacement normal to the plane and heat flux across the plane z = 0 must vanish. The
shearing stresses on z = 0 should be zero, as a point in the solid approaches infinity, the
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stresses, displacement, and temperature at that point must die off and approach zero. In
other words, this is a thermal condition as in case (a). Let the constant applied pressure
and constant temperature prescribed on the crack faces be f and k, respectively. Equa-
tions (31) and (32) are reduced, since m = i = en= O to

(36a)
c a

jo ( O+ L i- Ln,,(sSt) Ji(S) ds = - [2Ga(1+v) Tok/T(1 -v)]
n=O 0

and

co a

Jm(t) + fT [L',,(St) + (-l)mL, _m(s
n=0 

t)] (s) ds = 0 ; (36b)

CD a

go(t) +L E
n=0O

Mn, 0 (s t) gn(s) ds = -2f/'r - , jo(S) ds
0

(37a)
o a

+ E 
n=O 

and

coa

g.(t) + Ef
n= 0

[Mn, m(S t) + () m n .m(s, t)} n(s) ds

= -f (st)m j.(s) ds +t i- [Nn,.(S.t) + (-1)mfn,.m(S,t)]jn(S) ds .
0 nIO 0

(37b)

Since the isothermal case for cracks under constant pressure was discussed in de-
tail by Collins (3), in what follows, f is taken as zero and the net effect of temperature
on the crack-opening displacement and stress intensity factor is sought.

The method of successive approximation for the Fredholm (7) integral equation is
used to obtain the interated values of jm(t) and g(t), m = 0,1,2, from Eqs. (36) and
(37) when the ratio a/2h is small and the kernels in Eqs. (34) and (35) are expressed in
terms of the fourth type of Appell's hypergeometric function of two variables. The in-
tegrals L, ±m (s, t); m., m (s, t); and Nn, ±M (s, t) in Eqs. (23), (27), and (28) are
written as

Lnm(S t)
2sntm r (n m + )

T1/2 (2h)n+m+1 r(n + ) + + )

F [
4 L2 

1

2

1 1 1s\
n+, m+ M 2-

2 \~~~2 h ' ( h

and

10

N.,o(s- O in(s) ds
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Ln,-m(s,t) =

Mn m(s t) =

(-1) m 2,ntm

7T ( 2 h)n+m+ 1
F n +1

-sn+1 tm+ r (n + m + 3)

71l/2(2h)n+m+3 r n +) r (m + )

[3
4F 

3
n + m + -;

2

3
n+ -,

2

and

(- 1)m+1 2sn+ 1 tm+ l 371 (2h F. m + -
7T (2h)n+m+3 2 2

n + 3 m + 3;
2 2\2h/

Sn tm+l1 n + m + (2hn~ l[ + (m2 )
2hn+m+l, n + 1) r ( + 3) 1r/2

4 [21
1n + m +- 
2'

and

Nn, -mn(s, t) F (-1)m2sn t+ -
7 (2m+ 1 )( 2 h)n+m+ 4

1

2

[m + 1
2

3 2 2l

2 \2h / 22; ( ) ( 

n + 1; n + 1, m+ ; -
2 2 2 \2h1

where Bailey's (8) formula for integrals involving multiplication of Bessel functions is
employed. It is readily observed from Ln, +m that to obtain im correct to (h- 5 ) the
functions m for m > 5 may be neglected, and Eqs. (36) yield five simultaneous integral
equations for the functions im ( t), where m = 0, 1,... , 4. The solution to these equations
is found by iteration as

(,B) = -K [ 1 - 2 /7r + 4 E 
2/7r 2

- (1/37r+ 8/7T3) e3
- e 

2
/7 + (13/712 + 16/7r3) E

4

+ 2 E2 f 2/7T2 - 3 3 p2 /27 - ( 3/4 7 + 4/7T3 ) e 4

-( 3/207 + 38/773 ) e 5 ], (38a)

j1 (3) = 4Kep8/7T [1- 2e/T + ( 1/2 + 4/T 2 ) 2

+ 14 32/ - ( 5/37 + 8/73 ) 3 - 7 2/7 2] (38b)

(38c)(3) = 4Ke, 2 /7T [1 - 2e/nT + 4 2 /7T2 ]

2
+1 1 ,, 1/
m+- n+-S 2 2 2h/

2

(2h) 

3 sm+ ; 2h

Mn,-m(S t) =

(t2]

Nnm(s, t) =

11

n + 3 ;
2

t 2
1 (2h)

t
I (2h
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j3 (13) = 4KE/33 /7 [1 - 2 E/7r] (38d)

i4(,B) = 4Ke614 /7r (38c)

where

E = a/2h

1 = t/2h

and

K = 2G a( 1v) Tk/7 (1- v)

Using a similar procedure and solving Eqs. (37) by iteration yield the values for
g.( t) where m =0, ,. . ., 4, correct to o [h-5 as

go() = Kt 1 - 4E/7+ 8 2/T2 - 16E3/T3 - 2E 2 /37T

+ (47/372 + 16/7 3 + 16/7r4 ) E 4 + 2 2 2/37T2

- (4/T2 + 12/T3) 3 32 - (3/207 + 4/57 3 ) ap4

- (- 3/10 + 1/72 + 86/37T3 + 32/7T4 ) S5] (39a)

9(1) = -[8Ktef3/37T1 (1- 2e/ + (- 3+ 2/157+ 4/7
2 ) E2

+ (2/5+ 21/57)32 - 216p2/1072 - (-13/127r+ 8/72) E31 (39b)

g2 (P) =- [8KtEp /57T] [I- 2E/7T + (-5/4+ 25/8T + 1O/7T2 ) e2 + 12/7] (39c)

g3 (1l) = - [8K tE3 /771 [ - 2e/I (39d)

g4(13) = - [8KtE13 4 /97T]. (39e)

Substituting Eqs. (39) in Eq. (34) yields the Fourier coefficients for the crack-opening
displacement for each of the coplanar cracks as

2w = H(1 -p2)1I { - 4e/7 + 8E2 / - (27+ 16/73 )e 3

+ (49/3772 + 16/,r3 + 16/774) E4

- (-3/207 + 5/12 + 622/ 1573 + 32/f4) S S

+ [4(l-p 2)/3][E 3/37 - E4/37T2 + (3/207 + 2/72 + 34/7T3) 5]

- [8(1-p2) 2 /15 (3/20T + 4/5 v3)} (40a)
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2w1 = - [8HE2p(1_p2)" /3n] {1 - 2e/T

+ (-13/5+ 65/157T+ 4/72 )E2
- (-13/127+ 101/n2 ) E3

- ( 1- p 2) (2/15 + 7/ir) E2 - 7 3/10721 } ,

2w2 = - [8He3p2 (1- p2) /2/57r [1 - 2/7r + (-31/28 + 25/87 +10/72 ) 2

- (1 2 ) 2/3],

2w = - [8H4p3(1- p2)1/2/77r - 2/nI,

2w4 = -8HeSp4(1 - p2)1/ 2/9nT

where

p = r/a

and

H = 4(1+v) Tka/n7.

Substituting
tensity factor:

Eqs. (39) in Eq. (35) leads to the Fourier coefficients of the stress in-

a0 = -Ka [1 - 4/ + E2 /n 2
- (2/3n+ 16/7 3 ) e3

+ (49/37T2 + (6/7T3 + 16/n4 )e4

- (-3/207T + 5/7r2 + 622/157 3 + 32/T4) e5] , (41a)

a1 = (8Kae 2 /37T) [1 - 2e/7 + (-13/5+ 13/3?T+ 4/nr2 ) e2

- (13/127r+ 101/87n2 ) 3 ] , (4 lb)

ar2 = (8Kae 3 /5n) [1 - 2/ + (-31/28+ 25/87T+ 10/nT2) e21,

a3 = (8KaE4 /77T) (1- 2/7),

a4
= 8Ka 5 /97r n

(41c)

(4 id)

(41e)

It is also a simple matter to show that the decrease in potential energy of deforma-
tion per crack due to the temperature field is

(40b)

(40c)

(40d)

(40e)

13
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1 1o0(WW+- W-) dl
2 j 1 Z

a

= 4 ( 1 + v) aTokfa 3/31 [ - 4e/T

+ 8 2/7 2 - (2/57'- 16/73)3

+ (241/157T 2 + 16/n 3 + 16/774 ) E4

- (-33/147r + 17/57T2 + 3802/1057T3 + 32/7T4),5 5] (42)

where f is the applied constant pressure on the crack faces. It is noted that as 2h --a
the quantities in Eqs. (40) through (42) reduce to the known result for those of a single
crack.

DISCUSSION

In this analysis, the problem of two coplanar penny-shaped cracks in a heated, in-
finite elastic medium is formulated in terms of potential functions, and the solution is
reduced to that of sets of coupled integral equations for the auxiliary functions iM Im
and e m An assumption that the applied loading and temperature field possess
mirror symmetry about the perpendicular bisector of 00 leads to the simple relations
that jm(t) = Jm(t) and m(t) = gm(t) . The problem of two coplanar penny-shaped cracks
being opened by constant uniaxial tension when the heating of the solid is steadily uniform
is studied in detail. The magnitudes of auxiliary functions, crack-opening displacement,
stress intensity factor, and decrease in potential energy per crack are given in Eqs. (38)
through (42). It is noted that the effect of the presence of a second coplanar crack ap-
pears in the solution as a perturbation and when 2h - 0 the solution reduces to that of a
single crack.

The method of solution in this report follows that of Collins (3). It is capable of im-
mediate generalization to similar problems in which the cracks are of different radii.
Further, by combining this method with that of Shail (9) the solution to the two coplanar
cracks opened under tension in a heated thick elastic plate can be obtained easily.
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